Monday, March 06, 2023

Artificial Intelligence isn't the silver bullet for bias. We have to keep working on ourselves.

There's been a lot of attention paid to AI ethics over the last few years due to concerns that use of artificial intelligence may further entrench and amplify the impact of subconscious and conscious biases.

This is very warranted. Much of the data humans have collected over the last few hundred years is heavily impacted by bias. 

For example, air-conditioning temperatures are largely set based on research conducted in the 1950s-70s in the US, on offices predominantly inhabited by men and folks wearing heavier materials than worn today. It's common for many folks today to feel cold in offices where air-conditioning is still set for men wearing three-piece suits.

Similarly, many datasets used to teach machine learning AI suffer from biases - whether based on gender, race, age or even cultural norms at the time of collection. We only have the data we have from the last century and it is virtually impossible for most of it to be 'retrofitted' to remove bias.

This affects everything from medical to management research, and when used to train AI the biases in the data can easily affect the AI's capabilities. For example, the incredibly awkward period just a few years ago when Google's image AI incorrectly identified black people as 'gorillas'. 

How did Google solve this? By preventing Google Photos from labelling any image as a gorilla, chimpanzee, or monkey – even pictures of the primates themselves - an expedient but poor solution, as it didn't fix the bias.

So clearly there's need for us to carefully screen the data we use to train AI to minimise the introduction or exacerbation of bias. And there's also need to add 'protective measures' on AI outputs, to catch instances of bias, both to exclude them from outputs and to use them to identify remaining bias to address.

However, none of this work will be effective if we don't continue to work on ourselves.

The root of all AI bias is human bias. 

Even when we catch the obvious data biases and take care when training an AI to minimise potential biases, it's likely to be extremely difficult, if not impossible, to eliminate all bias altogether. In fact, some systemic unconscious biases in society may not even be visible until we see an AI emulating and amplifying them.

As such no organisation should ever rely on AI to reduce or eliminate the bias exhibited by its human staff, contractors and partners. We need to continue to work on ourselves to eliminate the biases we introduce into data (via biases in the queries, process and participants) and that we exhibit in our own language, behaviours and intent.

Otherwise, even if we do miraculously train AIs to be entirely bias free, bias will get reintroduced through how humans selectively employ and apply the outputs and decisions of these AIs - sometimes in the belief that they, as humans, are acting without bias.

So if your organisation is considering introducing AI to reduce bias in a given process or decision, make sure you continue working on all the humans that remain involved at any step. Because AI will never be a silver bullet for ending bias while we, as humans, continue to harbour them.

Read full post...

Wednesday, March 01, 2023

Does Australia have the national compute capability for widespread local AI use?

There's been a lot of attention on the potential benefits and risks of artificial intelligence for Australia - with the Department of Industry developing the Artificial Intelligence (AI) Ethics Framework and the DTA working on formal AI guidelines.

However comparative less attention is often placed on building our domestic AI compute capability - the local hardware required to operate AIs at scale.

The OECD also sees this as a significant issue - and has released the report 'A blueprint for building national compute capacity for artificial intelligence' specifically to help countries that lack sufficient national compute capability.

As an AI startup in Australia, we're been heavily reliant on leveraging commercial AI capabilities out of the US and Europe. This is because there's no local providers of generative AI at commercial prices. We did explore building our own local capability and found that the cost for physical hardware and infrastructure was approximately 10x the cost of the same configurations overseas.

There's been global shortages of the hardware required for large AI models for a number of years. Unfortunately, Australia tends to be at the far end of these supply chains, with even large commercial cloud vendors unable to provision the necessary equipment locally.

As such, while we've trained several large AI models ourselves, we've not been able to locate the hardware or make a commercial case for paying the costs of hosting them in Australia.

For some AI uses an offshore AI is perfectly acceptable, whether provided through a finetuned commercial service or custom-trained using an open-source model. However, there's also many other use cases, particularly in government with jurisdictional security requirements, where a locally trained and hosted AI is mandated.

A smaller AI model, such as Stable Diffusion, can run on a laptop, however larger AI models require significant dedicated resources, even in a cloud environment. Presently few organisations have the capability to pay the costs for sourcing the hardware and capability to run this within Australian jurisdictions.

And that's without considering the challenge in locating sufficient trained human resources to design, implement and manage such a service.

This is an engineering and production challenge, and will likely be resolved over time. However with the high speed of AI evolution, it is a significant structural disadvantage for Australian organisations that require locally hosted AI solutions.

If Australia's key services have to rely on AI technologies that are several generations behind world-standards, this will materially impact our global competitiveness and capability to respond.

As such, alongside worrying about the ethics and approaches for using AI, Australian governments should also reflect on what is needed to ensure that Australia has an evolving 'right size' national compute capability to support our AI requirements into the future.

Because this need is only going to grow.

Read full post...

Bookmark and Share